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The secret dream: 
get a glimpse of the 
divine through the 
way the world gets 
ruled 

Scientific approach: 
algorithms that “see” into the future 

Sensors, measurements
Assumptions and family of models
Model design and validation



The future is just a step ahead…

𝜋𝜋 𝜋𝜋 𝜋𝜋 



Time invariant family 
of models

Linear:
AR, MA,  ARMA, OE, ARX, ARMAX, 
ARIMA(TV), State space, Kalman filters…

Nonlinear:
RNN, GP,  TCN, SEQ2SEQ, LSTM, GRU, 
TRANSFORMERS…

Predictive models



Exploting space&time
dependencies

Exploit the existence of 
a –possibly latent-
manifold in space and 
time

Inductive bias: 
functional/relational 
dependencies

Predictive models



Why graphs
AI-based graph processing
Some projects

Presentation outline



Why graphs

In many applications graphs come naturally
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In others are latent
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Why graphs



In others, we can derive graphs from time series 
(signals)
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Why graphs



Graph representation of temporal signals

There are several settings in which time comes into play when considering graph data.

Graph streams

Dynamic Graphs Spatiotemporal graph signals
Image credits: Daniele Zambon.

Graph representation of temporal signals



Graph streams

The most general setting

• Graphs are sampled from a stochastic process
• Nodes are not identified.
• Arbitrary changes in topology.

Gt ∼ P.

• Difficult to track changes, defining statistics is not trivial.

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.
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Dynamic graphs

We look at interactions that happen over time as sequences of relational events.

• Dynamic graphs model systems where relationships and node attributes evolve with time.
• Event-based paradigm: dynamic graphs model sequences of interactions among nodes.
• Powerful paradigm to model social/interaction networks and build recommender

systems.

[2] E. Rossi et al., “Temporal graph networks for deep learning on dynamic graphs”, 2020.
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Spatiotemporal graph signals

Spatiotemporal graphs capture the setting typical of sensor networks.

• A different approach to model multivariate time 
series coming from multiple sources.

• Each node (sensor) is associated with a time series 
(eventually with multiple channels)

• Edges describe (soft) functional dependencies 
among sensors

– E.g.: causality, physical constraints, etc.
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Spatiotemporal graph signals

Spatiotemporal graphs capture the setting typical of sensor networks.

• A different approach to model multivariate time 
series coming from multiple sources.

• Each node (sensor) is associated with a time series 
(eventually with multiple channels)

• Edges describe (soft) functional dependencies 
among sensors

– E.g.: causality, physical constraints, etc.

We focus on this setting

Spatiotemporal graphs



Spatiotemporal graph signals



Spatiotemporal graph signals (i)

We consider a graph signal as a tuple Gt = ⟨A t , X t , U t , E t ⟩ where

• A t ∈ RNt × N t is a weighted adjacency matrix, with Nt being the number of nodes;

• X t ∈ RNt ×dx is the node-attribute matrix;
– x i (the i-th row of X t ) is the dx-dimensional attribute vector associated with the i-th node;

t

• U t ∈ RNt ×du are exogenous variables (e.g., weather forecasts, datetime information);

• E t ∈ REt ×de is an edge-attribute matrix, with Et being the number of edges;

We focus on settings where the number of nodes is constant over time, i.e., Nt = N.

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.
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Spatiotemporal graph signals (ii)

We can then model any multivariate time series X t : t+T = {X t , . . . , X t+T }, together with 
covariates and additional relational information as a sequence of attributed graphs
Gt:t+T = {Gt , . . . , Gt+T }

Note that relational information (A t ) might not be known a priori and we might be
required
to estimate the underlying graph directly from the data, taking uncertainty into account.
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We can then model any multivariate time series X t : t+T = {X t , . . . , X t+T }, together with 
covariates and additional relational information as a sequence of attributed graphs
Gt:t+T = {Gt , . . . , Gt+T }
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Spatiotemporal graph signal



Spatiotemporal 
Graph Neural Networks



Learning from time and space

Consider families of parametric models fθ for node-level forecasting:

More precisely, we focus on those families where fθ is a neural network. We now know how to use neural networks for processin

• the time dimension, with RNNs, TCNs, and Transformers;
• the space dimension, with CNNs and GNNs.

What about processing time and space altogether?
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Spatiotemporal Graph Neural Networks

We call Spatiotemporal Graph Neural Network (STGNN) a neural network exploiting both 
temporal and spatial relations of the input spatiotemporal graph signals.

X t: t+W : A: STGNN

t

We consider families of models that exploit message-passing to process the spatial dimension

Spatiotemporal Graph Neural Networks



Spatiotemporal message passing

A general scheme for spatiotemporal message-passing networks:

• ϕ is the message function.
• Aggr is a permutation invariant aggregation function.
• γ is the update function. xi

xj x3

x4

eij e13

e14

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.
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A general scheme for spatiotemporal message-passing networks:

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.

Spatiotemporal message passing



Design paradigms for STGNNs

There exist different design paradigms on how to integrate temporal and spatial processing in a 
single architecture:

• Time-then-Space
Embed each time series in a vector, which is then propagated over the graph.

• Time-and-Space
Temporal and spatial processing are interleaved inside the same architecture’s module.

• Product graph
The sequence of graphs is transformed into a single graph, then processed with a GNN.

Processing approaches
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Time-then-Space

A straightforward approach to process spatiotemporal graphs is simply to:

1. Embed each node-level time series in a vector.
2. Use (a stack of) any of the graph convolutional layers we have seen so far.
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Time-and-Space

The idea is to use graph convolutional layers to implement (part of) neural operators for 
sequential data...

...or, conversely, implement message-passing networks by using temporal operators. 

Different strategies exhist

• Interleaved spatial and temporal filters.
• Graph Convolutional Recurrent Neural Networks.
• Spatiotemporal Message Passing.
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Time-and-Space

The idea is to use graph convolutional layers to implement (part of) neural operators for 
sequential data...

...or, conversely, implement message-passing networks by using temporal operators. 

Different strategies exist

• Interleaved spatial and temporal filters.
• Graph Convolutional Recurrent Neural Networks.
• Spatiotemporal Message Passing.

Time-and-Space



Spatiotemporal Graph Convolutional Networks (i)

We can build deep spatiotemporal convolutional neural networks by alternating spatial and 
temporal convolutional filters.

The main idea:

• Compute intermediate representations by using a node-wise temporal convolutional
layer:

x ′i = ξ Θ ⋆1 τ x i
t −W :t t−w :t

-t tZ = σ A X ′
tΘ2

where ⋆τ indicates the temporal convolution operator and ξ is an activation function.
• Then, compute the updated representation by using a time-wise spatial convolution:

( �
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Spatiotemporal Graph Convolutional Networks (i)

We build deep spatiotemporal convolutional neural networks by alternating spatial and 
temporal convolutional filters.

The main idea:

• Compute intermediate representations by using a node-wise temporal convolutional
layer:

where ⋆τ indicates the temporal convolution operator and ξ is an activation function.
• Then, compute the updated representation by using a time-wise spatial convolution:

Spatiotemporal Graph Convolution Networks



Product graph: combining rules

• Cartesian product graph
Spatial graphs are kept and each node is connected to itself in the previous time instant.

• Kronecker product graph
Each node is connected only to its neighbors in the previous time instant.
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Product graph models

Of course, spatial and temporal edges can (and should) be treated differently in the
processing.

A possibility is to represent the product graph as a heterogeneous graph, assigning a
different class to spatial and temporal edges.

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.
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Product graph models

Of course, spatial and temporal edges can (and should) be treated differently in the
processing.

A possibility is to represent the product graph as a heterogeneous graph, assigning a
different class to spatial and temporal edges.

Some approaches in the literature process spatiotemporal data in this fashion, e.g. [10]:

ST-GCNs

Pose
Estimation

...

Input Video

Action
Classification

Class Score

Running

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.
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SONDER – SFOE Project

• Day-ahead forecasts of peak 
consumption and quarter-hour 
consumptions for control of Battery 
Energy Storage System (BESS) 
and Peak Shaving

• Use case: smart grid of Arbon. 
10k+ users

57
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• Learn to predict the load at each 
node with a single Graph Neural 
Network (GNN) model.

• Also learn the graph edge 
weights among nodes.

Model Name MAE 
(MW)

SUM_MAE 
(MW)

SUM_MAPE 
(%)

Gated Graph 
Network 0.030 0.648 6.33 %

FCRNN-large 0.038 0.761 7.40 %
GRU-RNN 
(univariate) - 0.678 6.70 %

Results on 50 aggregates of meters

Model Name MAE (kW) NRMSE (%) R2
Gated Graph 
Network 23.572 2.50% 0.872

FCRNN-large 29.52 3.02 % 0.813
FCRNN-small 31.568 3.17% 0.794

Results on single sample meters

SONDER – Load forecast



Swain – ERA-Net/SNSF Project

• Predictive graph model for rainfall runoff 
and pollutants anomalies detection

• Principal use case: Danube basin (800+ 
measurement points)

• Used meteo data and GNNs to forecast 
water flows all over the basin.

59



Waterflow Prediction
Graph models predict the 
waterflow simultaneously at each 
location outperforming traditional 
hydrological models with an 
improvement of 14% .

Graph models consider causal 
relationships among locations.

21 60



GraPV – Innosuisse Project 
• Day-ahead and intraday solar farms production 

forecasting 

• Outcome: GraphSight USI Spinoff

• SODA is a research project on PV power
forecasting, carried out by CSEM and BKW
focusing on Intraday forecasting: 24 timesteps
ahead (15 minutes to 6h)

• SODA data are not publicly available, but
performance on the public NREL dataset of
simulated ~5000 PV production in California are 
given in paper
Simeunović, J., et al. "Interpretable temporal-
spatial graph attention network for multi-site PV
power forecasting." Applied Energy 327 (2022).
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SODA (Simeunović et. al.) Our
Dataset Improvment MAE (kW) MRE (%) MAE (kW) MRE (%)

California + 10.7% 3.28 ± 0.04 13.0 ± 0.1 2.93 ± 0.03 11.6 ± 0.1

MAE (kW) as function of horizon step (15 minutes) 
Purple = Ours vs Yellow = SODA (Simeunović et. al.)

Mean performance over all farms (± standard deviation)

Our solution w.r.t. the SODA project



Concluding 
remarks



Cesare Alippi Slobodan Lukovic Daniele Zambon Andrea Cini Ivan Marisca

Luca Butera Alessandro Manenti Tommaso Marzi Stefano Imoscopi Federico Bombardieri

Graph Machine Learning Group

gmlg.ch

Thanks to my great team

https://gmlg.ch/
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