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The secret dream:
get a glimpse of the
divine through the
way the world gets
ruled

Scientific approach:

algorithms that “see” into the future
Sensors, measurements
Assumptions and family of models
Model design and validation




The future is just a step ahead...




Predictive models

ARMA(2,1)

Time invariant family
of models

Consumption (kW)
= =

Linear:
AR, MA, ARMA, OE, ARX, ARMAX,
ARIMA(TV), State space, Kalman filters...

Nonlinear:
RNN, GP, TCN, SEQ2SEQ, LSTM, GRU,
TRANSFORMERS...



Predictive models

Exploting space&time
dependencies

Exploit the existence of
a —possibly latent-
manifold in space and
time

Inductive bias:
functional/relational
dependencies




Presentation outline

="\Why graphs
=Al-based graph processing
*Some projects

.



Why graphs

In many applications graphs come naturally




Why graphs

In others are latent
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Why graphs

In others, we can derive graphs from time series
(signals) wooow
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Graph representation of temporal signals

There are several settings in which time comes into play when considering graph data.
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Dynamic Graphs

Spatiotemporal graph signals

Image credits: Daniele Zambon.



Graph streams

The most general setting

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.
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We start from the most general setting.

 Graphs are sampled from a Gt ~ P.

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.



Graph streams

We start from the most general setting.

 Graphs are sampled from a stochastic process G: ~ P.
» Nodes are . = No correspondence between nodes at different time steps.

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.



Graph streams

We start from the most general setting.

 Graphs are sampled from a stochastic process Gt ~ P.
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Graph streams

We start from the most general setting.

Graphs are sampled from a stochastic process Gt ~ P.

Nodes are not identified.

Arbitrary changes in topology.
Difficult to track changes,

[1] D. Zambon, “Anomaly and Change Detection in Sequences of Graphs”, 2022.



Dynamic graphs

We look at interactions that happen over time as sequences of relational events.
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» Dynamic graphs model systems where and node attributes

[2] E. Rossi et al., “Temporal graph networks for deep learning on dynamic graphs”, 2020.



Dynamic graphs

We can look at interactions that happen over time as sequences of relational events.
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» Dynamic graphs model systems where relationships and node attributes evolve over time.

. paradigm: dynamic graphs model among nodes.

[2] E. Rossi et al., “Temporal graph networks for deep learning on dynamic graphs”, 2020.



Dynamic graphs

We can look at interactions that happen over time as sequences of relational events.
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» Dynamic graphs model systems where relationships and node attributes evolve over time.
» Event-based paradigm: dynamic graphs model sequences of interactions among nodes.
e Powerful paradigm to model and build

[2] E. Rossi et al., “Temporal graph networks for deep learning on dynamic graphs”, 2020.



Spatiotemporal graphs

Spatiotemporal graphs capture the setting typical of
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Spatiotemporal graphs

Spatiotemporal graphs capture the setting typical of sensor networks.

» A different approach to model
coming from multiple sources.
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Spatiotemporal graphs

Spatiotemporal graphs capture the setting typical of sensor networks.

« A different approach to model multivariate time
series coming from multiple sources.

» Each node ( ) is associated with a time series
(eventually with multiple channels)
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Spatiotemporal graphs

Spatiotemporal graphs capture the setting typical of sensor networks.

« A different approach to model multivariate time
series coming from multiple sources.

» Each node (sensor) is associated with a time series
(eventually with multiple channels)

» Edges describe (soft)
among Sensors

— E.g.: causality, physical constraints, etc.
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Spatiotemporal graphs

Spatiotemporal graphs capture the setting typical of sensor networks.

« A different approach to model multivariate time
series coming from multiple sources.

» Each node (sensor) is associated with a time series
(eventually with multiple channels)

 Edges describe (soft) functional dependencies
among Sensors

— E.g.: causality, physical constraints, etc.

We focus on this setting
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Spatiotemporal graph signals



Spatiotemporal graph signal

We consider a graph signal as a tuple G: = (A¢, X, Ut, Et) Where

e A; € RNixNt js g , with N; being the number of nodes;

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.
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Spatiotemporal graph signal

We consider a graph signal as a tuple G: = (A¢, X, Ut, Et) Where
e A; € RNixNt js g , with N; being the number of nodes;

e X; € RNi<dx s the ;
- x; (the i-th row of X;) is the dx-dimensional attribute vector associated with the i-th node;

e Us € RNxdu gre (e.g., weather forecasts, datetime information);
e E; € RE*de is an , with E; being the number of edges;
We focus on settings where the number of nodes is , i.e., Ne = N.

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.



Spatiotemporal graph signal

We can then model any multivariate time series Xt:¢+ 7 = {Xt, ..., Xt+ 7}, together with
covariates and additional relational information as a sequence of attributed graphs

Get+7 = {Gt, ..., Gra1}

Prior relational info

Gmph extraction ||||

Can also be learned!




Spatiotemporal graph signal

We can then model any multivariate time series Xt:¢+ 7 = {Xt, ..., Xt+ 7}, together with
covariates and additional relational information as a sequence of attributed graphs

G+ = {Gt, ..., Gt+7}

Prior relational info

Gmph extraction ||||

Can also be learned!

Note that relational information (A:) might not be known a priori and we might be
required to estimate the underlying graph directly from available data



Spatiotemporal
Graph Neural Networks



Learning from Time and Space

Consider families of parametric models fy for node-level forecasting:

’?;:HH - f@(gt—W:t)-
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We consider families of parametric models fs for node-level forecasting:
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More precisely, we focus on those families where fp is a neural network.

We now know how to use neural networks for processing:

« the time dimension, with RNNs, TCNs, and Transformers;
» the space dimension, with CNNs and GNNs.



Learning from Time and Space

We consider families of parametric models fo for node-level forecasting:

oi
Xtt+H = f@(gt—W:t)-
More precisely, we focus on those families where f5 is a neural network.

We now know how to use neural networks for processing:

« the time dimension, with RNNs, TCNs, and Transformers;
* the space dimension, with CNNs and GNN:s.

What about processing time and space altogether?



Spatiotemporal Graph Neural Networks

We call a neural network exploiting both
temporal and spatial relations of the input spatiotemporal graph signals.

Xt:tvw E 4{ STGNN }— Xeein

We consider families of models that exploit to process the spatial dimension




Spatiotemporal message passing

A general scheme for
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* ¢ is the message function. eu

e Aggr IS a permutation invariant aggregation function. |

* y is the update function. /@\

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.



Spatiotemporal message passing

A general scheme for
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Graph pooling Graph convolution Global pooling

Graph convolution

[3] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, 2023.



Processing approaches

There exist different design paradigms on how to integrate temporal and spatial processing in a
single architecture:

e Time-then-Space
Embed each time series in a vector, which is then propagated over the graph.
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Processing approaches

There exist different design paradigms on how to integrate temporal and spatial processing in a
single architecture:

e Time-then-Space
Embed each time series in a vector, which is then propagated over the graph.

e Time-and-Space
Temporal and spatial processing are interleaved inside the same architecture’s module.

e Product graph
The sequence of graphs is transformed into a single graph, then processed with a GNN.



Time-then-Space

A straightforward approach to process spatiotemporal graphs is simply to:

I. Embed each node-level time series in a vector.

E‘ SeqEncoder b I -



Time-then-Space

A straightforward approach to process spatiotemporal graphs is simply to:

I. Embed each node-level time series in a vector.
2. Use (a stack of) any of the graph convolutional layers

E‘ SeqEncoder b I -



Time-and-Space

The idea is to use graph convolutional layers to implement (part of) neural operators for
sequential data...
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Time-and-Space

The idea is to use graph convolutional layers to implement (part of) neural operators for
sequential data...

...0r, conversely, implement message-passing networks by using temporal operators.

Different strategies exist

« Interleaved spatial and temporal filters.
» Graph Convolutional Recurrent Neural Networks.
 Spatiotemporal Message Passing.



Spatiotemporal Graph Convolution Networks

We can build deep spatiotemporal convolutional neural networks by alternating spatial and
temporal convolutional filters.



Spatiotemporal Graph Convolution Networks

We build deep spatiotemporal convolutional neural networks by alternating spatial and
temporal convolutional filters.

The main idea:

» Compute intermediate representations by using a
layer:
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where *t indicates the temporal convolution operator and € is an activation function.



Spatiotemporal Graph Convolution Networks

We build deep spatiotemporal convolutional neural networks by alternating spatial and
temporal convolutional filters.

The main idea:

» Compute intermediate representations by using a
layer: _ _
fi _ ¢ i
X wer = § (G)l *T Xt—w:t)

where xt indicates the temporal convolution operator and € is an activation function.

e Then, compute the updated representation by using a

Zi=—o (Aﬁ}xg@)



Product Graph

e Cartesian product graph
Spatial graphs are kept and each node is connected to itself in the previous time instant.
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Product Graph

e Cartesian product graph

Spatial graphs are kept and each node is connected to itself in the previous time instant.
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Product Graph

Of course, spatial and temporal edges can (and should) be treated differently in the
processing.

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.

31



Product Graph

Of course, spatial and temporal edges can (and should) be treated differently in the
processing.

A possibility is to represent the product graph as a heterogeneous graph, assigning a
different class to spatial and temporal edges.

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.
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Product Graph

Of course, spatial and temporal edges can (and should) be treated differently in the
processing.

A possibility is to represent the product graph as a heterogeneous graph, assigning a
different class to spatial and temporal edges.

Some approaches in the literature process spatiotemporal data in this fashion, e.g. [10]:

,:ém" 2l ‘} [}
g ot Running
ol o : ——
L .

Pose i "5 " Action
Estimation g Classification

Input Video — Class Score
ST-GCNs

[10] S. Yan et al., “Spatial temporal graph convolutional networks for skeleton-based action recognition”, 2018.
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SONDER - SFOE Project

» Day-ahead forecasts of peak
consumption and quarter-hour
consumptions for control of Battery -«
Energy Storage System (BESS)
and Peak Shaving

« Use case: smart grid of Arbon.
10k+ users

o



SONDER — Load forecast

Imput

load profiles Graph-based predictor

Aggregation

Forecast

« Learn to predict the load at each
node with a single Graph Neural
Network (GNN) model.

« Also learn the graph edge
weights among nodes.

Model Name MAE SUM_MAE SUM_MAPE
(MW) (MW) (%)

SRR ETEPE 0.030 0.648 6.33 %

Network

FCRNN-large 0.038 0.761 7.40 %

EHEL - 0.678 6.70 %

(univariate)

Results on 50 aggregates of meters

Model Name MAE (kW) NRMSE (%) R2
Gated Graph ., ., 2.50% 0.872
Network

FCRNN-large 29.52 3.02 % 0.813
FCRNN-small 31.568 3.17% 0.794

Results on single sample meters



Swain — ERA-Net/SNSF Project

 Predictive graph model for rainfall runoff

and pollutants anomalies detection

* Principal use case: Danube basin (800+

measurement points)

* Used meteo data and GNNs to forecast

water flows all over the basin.

SWAIN Project: Day-ahead Ralnfall-Runoff predictions
select data split: =

Map  Timesen ies
Hode aize by: @same elev  area gov Hode color by: @nse  mse  hydro nse  hydro_mse

LamaH-CE Network

L} 10 12
MSE: 113108.56, MAE: 182.63, MAPE: 0.08, RMSE: 335.32, NSE: 0.87

59



Waterflow Prediction

Graph models predict the 1 hycroNsE
. 0.02 7 at_NSE
waterflow simultaneously at each NSE 1. i1 (@ Q) 17
— 42 - 4
location outperforming traditional ST (@ - Qa) 3 ° |
hydrological models with an ' > o]
improvement of 14% . ]
o
Graph models consider causal =
relationships among locations. NE R
0.6 |
Predictions for catchment: 399 s - :} é :
12900—: 0.4 —
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8000 —E g :;T:ted 0.2 7
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GraPV — Innosuisse Project

+ Day-ahead and intraday solar farms production RS SRt P H
forecasting Jime e O 7 oy
. 7 "".;e‘h_.‘_f’ o\ 2 .‘.t:s; Slnveniaj’ ]
« Outcome: GraphSight US| Spinoff ..ﬁ.;'"";":@'.;{:.;a“'ﬁ“i" Do Croeth
g LN
- SODA is a research project on PV power Qs S e Ra, E T
forecasting, carried out by CSEM and BKW .E“’ A R rasooviny
focusing on Intraday forecasting: 24 timesteps ".* ..‘%_:':r__-‘&_,, oy
ahead (15 minutes to 6h) ..'_huty L3 Mo
2,0, < W% 35
* SODA data are not publicly available, but F"""l%.} '?‘i\h
performance on the public NREL dataset of v - N"{‘ ..'._-1._.." o
simulated ~5000 PV production in California are 95 R #ﬁi
given in paper "._ Y,
Simeunovic, J., et al. "Interpretable temporal- » ' .'\ .
spatial graph attention network for multi-site PV S &
power forecasting." Applied Energy 327 (2022). HiN ;Cata;a
*esce® P,

%
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.
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Our solution w.r.t. the SODA project

MAE (kW) MRE (%) MAE (kW) MRE (%)

California BN IINA7S 3.28+0.04 13.0+0.1 2.9310.03 11.6 £0.1

Mean performance over all farms (+ standard deviation)

4.00

2.00

1.00
0.00 5.00 10.0 15.0 20.0

MAE (kW) as function of horizon step (15 minutes)
Purple = Ours vs Yellow = SODA (Simeunovic et. al.) 18



Concluding
remarks

Even if the crystal ball looks foggy

useful forecasts can be provided given an
appropriate predictive model family and
expressive-enough data;

Inductive bias is a strong plus whenever available.
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.\ Graph Machine Learning Group

Thanks to my great team
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Cesare Alippi Slobodan Lukovic  Daniele Zambon Andrea Cini Ivan Marisca

Luca Butera Alessandro Manenti Tommaso Marzi Stefano Imoscopi Federico Bombardieri

gmlg.ch


https://gmlg.ch/
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